兵器谱——汇集古今中外经典兵器
学生作业帮

《事物的两面性》 这篇作文怎么写?

来源:学生作业帮 编辑:作业帮 时间:2019/02/20 13:54:00
《事物的两面性》这篇作文怎么写?《事物的两面性》这篇作文怎么写?《事物的两面性》这篇作文怎么写?就像坐在一个房子里,你在阴暗的角落,你什么也看不到,如果你坐在窗户旁边,你将看到无限美丽的风景.所以说,

《事物的两面性》 这篇作文怎么写?
《事物的两面性》 这篇作文怎么写?

《事物的两面性》 这篇作文怎么写?
就像坐在一个房子里,你在阴暗的角落,你什么也看不到,如果你坐在窗户旁边,你将看到无限美丽的风景.所以说,如果你现在一直坐在那个阴暗的角落,那么你就挪动你的凳子吧!其实每个人做每件事情都如同坐在一个凳子上,如果你永远依赖于那个位置,你只是一只井底之蛙.
——乐观的人,要学会换位思考,还要会考虑事物的两面性.
任何事情都是有两面性的.简单的说,不管从什么方面看一个问题都是不一样的.一只蝴蝶不小心飞到了一个房间里,它盘旋着想飞出这里,它不断往高处飞,但是总是发现飞不出这里,于是它开始不断地向墙上冲撞,它多么想从这里出去,可是知道它折断了自己美丽的翅膀都始终没有从这里飞出去.我看到当它每次离窗口只有不到一寸的时候,它却再次往上飞.
我们有的时候又何尝不是那只蝴蝶呢?很多人都是这样.在公共汽车上踩了别人的脚,有的人气势汹汹,嘴下毫不留情,还反要别人一口;但是有的人总会心平气和地向别人道歉.这种很明显地对比,很容易让人理会到事物的两面性以及换个位子的思考方法.总的来说就是一种将心比心的效果,仔细想想,这也是很正确的.如果别人不小心踩到了自己的脚,你会怎么做?多多用这种方法考虑问题,相信也会乐观许多.
我慢慢的长大了,别人都说我的思想中应该要更加多一些人性的思考和对于这个社会的思考.我已经不是那个小孩子了,我正在慢慢成熟,什么事情也应该改变了.最最大的改变估计就是思想方面的进步了,我学会了很多东西,最最成功的就是考虑倒关于换位思考以及事物的两面性了.
人应该体会别人的感受.我知道,每次我和别人发生了小小的争吵,别人的感受也一样不舒服,何必是这样?所以我总会每次先和别人道歉.原来的我的脾气一直不是很好,但是自从我觉得自己应该考虑别人的感受时,发现自己慢慢的改变了,我也不那么容易生气了.人总是一种很奇怪的东西,虽然发现自己很难改变,但是总是想要尽力去做.虽然不太相信星座什么的,但是我实在忍不住把它所说的往自己身上靠,自己是双子的,即使认为自己改变了性格那也只是另外的性格罢了,有的时候自己突然又会变成小孩子,不过这样也好.自己多一个性格也就能够更多体会别人的感受,何乐而不为?
人应该考虑到事物的两面性.简单地举例,比如人家讨论很多的网络游戏,从两面看就很清楚了.我原来也说过,网络游戏可以让人学到很多书本上学不到的东西,譬如社会生存常识等等,但是如果一味迷恋这种游戏,那就会让人上瘾,这是最好的例子了.想来想去,其实每个事情都是这样的,关键在于你自己的思考方法.所以我才说自己长大了,就是学会了很多这种深入思考的东西,也并不是空想.
我应该感谢自己的性格,虽然双子是变化无常的,但是,人又何尝不需要这种变化?
如果我是那只蝴蝶,也应该要是只聪明的蝴蝶.
即使你是井底之蛙,也要奋力改变自己的视角,看得更远.我们每个人都坐在自己的位置上,即使人生是个很大的房间,你应该学会不断得变换自己的位置,这样才能看到更广阔的空间.

  • 歼八战机大战神雕无人机谁胜谁败?
  • 性感模特
  • ipo停了是否对产业转型有巨大不利影响?
  • 高大上了,空军彩虹-4号无人机首次执
  • 日本网友评价:韩国母子三人遭性爸爸爷
  • 人身攻击以及系列马甲
  • 台湾抗战七十周年校阅视频
  • 真不敢相信会暂停IPO,会用这么粗暴
  • 在空版“被挖坟“
  • 券商要救市了,我做回雷锋把它们要投资
  • 为O22艇说句公道话
  • 98年香港约架,听说兔子揣着500亿
  • 为什么没有听说哪位做融券的最近爆发?
  • 山西高跟鞋赛跑 美女猛男踩“恨天高”
  • 对1130近防炮的疑问
  • 【寻找媒体人、书评人】希特勒的战争谋
  • 宁波一奥迪Q5轿车被贴满卫生巾
  • 我就发些图
  • 1507多空都在增仓,这事有点可怕
  • 我来评判一下,6月15日开始的中国金
  • 关于防空导弹射击火力通道。。。。。。
  • 如图,正方形ABCD中,EF分别是AD.DC的中点,BF,CE相交于点M,求证AM=AB
  • 已知:如图,CD⊥AB,EF⊥AB,垂足分别为D、F,CD=EF,AD=BF 求证:角A=角B
  • 如图,已知AB=CD,AE⊥BC于点E,DF⊥BC于点F,CE=BF连接AD,交EF于点O,求证:点O是线段AD中点
  • 已知:如图,A、B、C、D四点在同一直线上,AB=CD,AE//DF,BF//CE,AD和EF交与O.求证:OE=OF.
  • 已知 如图 EF分别为平行四边形ABCD边AD,BC上一点,且AF平行CE,求证,bf=de
  • 如图,∠DAB+∠ABC+∠BCE=360°.试判断AD与CE的位置关系,并说明理由.(我知道AD//CE,求理由过程)
  • 如图,∠DAB+∠B+∠BCE=360°.1.说明AD与CE的位置,并予以说明.图一图二2.作∠BCF=∠BCG,CF与∠BAH的平分线交于F,若∠F的余角等于2∠B的补角.求∠BAH;图三3.在前面的条件下,若p是AB上的一点,Q是CE上任一
  • 如图,AE⊥AB,AD⊥AC,AB=AE,∠B=∠E,猜想BD与CE的位置关系,说明理由.==
  • 如图5-3-4,已知AD平行BC,角A=角C,试说明AB平行CD
  • 如图,AD、BC交于O点,且角A=角B,角C=角D.试说明:AB平行CD位置如下:A BOC D A、B连接,A、D连接,B、C连接,C、D连接
  • 如图9,DE∥BC,CD⊥AB于D,FG⊥AB于G,试说明∠1=∠2. 图 9
  • ①如图,已知DE//BC,∠1=∠3,CD⊥AB,试说明FG⊥AB的理由 (2)若把题设中DE ∥ BC 与结论中FG ∥ DC 对调,命题还成立吗?试证明.(3)若把题设中∠1=∠3 与结论中FG ∥ DC 对调呢?试证明
  • 如图,已知点E、F分别在AB、CD上,CE、BF分别交AD于点M、N,∠B=∠C,∠AME=∠DNF,试说明∠A=∠D在3月6日21:30前回答的加分
  • 如图,若DE垂直AC,FG垂直AB,BC垂直AC,角1=角2,试说明CD垂直AB这里有图
  • 如图,已知点E、F分别在AB、CD上,CE、BF分别交AD于点M、N,∠B=∠C,试说明AB//CD的理由.
  • 点EF分别在ab和cd上,ce和bf分别交ad于点m和n,角b=角c,若角ame=角dnf 清问ab于cd平行吗说明理由是要证明 是什么 内错角 同旁内角 同位角这些
  • 如图所示,已知点A、E、F、D在同一直线上,AE=DF,BF⊥AD,CE⊥AD,垂足分别为F、E,BF=CE,求证:AB‖CD
  • 如图,已知AB垂直于BC,DC垂直于BC,E在BC上,且AE=AD,AB=BC求证CE=CD
  • 已知如图⊙o的两条弦AB,CD相交于点E 且AB=CD 连接BC,AD 求证 AE=CE如图
  • 如图,C是AB的中点,AD=BE,CD=CE,求证:∠A=∠B
  • 已知:如图,AB‖CD,BE.CE分别是∠ABC.∠BCD的平分线,点E在AD上,求证:BC=AB+CD是初二数学《快乐练测》P17页第五题
  • 2000年nba总决赛数据 云计算平台的特点 tmxa数据管理软件 大鱼海棠知乎 linux如何向上翻页 三维软件排行 中国软件国际 配股 前端和美工 易烊千玺美拍直播数据 app数据分析表 淘宝如何打造一个爆款
    兵器谱,汇集天下名器。查啊作业帮整容说文库